Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method.

نویسندگان

  • Daniel J. Gauthier
  • G. Martin Hall
  • Robert A. Oliver
  • Ellen G. Dixon-Tulloch
  • Patrick D. Wolf
  • Sonya Bahar
چکیده

We describe preliminary experiments on controlling in vivo atrial fibrillation using a closed-loop feedback protocol that measures the dynamics of the right atrium at a single spatial location and applies control perturbations at a single spatial location. This study allows investigation of control of cardiac dynamics in a preparation that is physiologically close to an in vivo human heart. The spatial-temporal response of the fibrillating sheep atrium is measured using a multi-channel electronic recording system to assess the control effectiveness. In an attempt to suppress fibrillation, we implement a scheme that paces occasionally the cardiac muscle with small shocks. When successful, the inter-activation time interval is the same and electrical stimuli are only applied when the controller senses that the dynamics are beginning to depart from the desired periodic rhythm. The shock timing is adjusted in real time using a control algorithm that attempts to synchronize the most recently measured inter-activation interval with the previous interval by inducing an activation at a time projected by the algorithm. The scheme is "single-sided" in that it can only shorten the inter-activation time but not lengthen it. Using probability distributions of the inter-activation time intervals, we find that the feedback protocol is not effective in regularizing the dynamics. One possible reason for the less-than-successful results is that the controller often attempts to stimulate the tissue while it is still in the refractory state and hence it does not induce an activation. (c) 2002 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Adaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems

This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...

متن کامل

Design and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism

The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...

متن کامل

Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics

In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...

متن کامل

Global Stabilization of Attitude Dynamics: SDRE-based Control Laws

The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2002